ГЛАВА 2.4. СТЕПЕНЬ АНОМАЛЬНОСТИ X(A.B.C.D).
1. Допустим, на некоей планете во вполне удобной местности
весьма рядовым видом является некто "голубой чешуйчатый кру-
толоб" с шестью ногами и двумя головами.
Это - норма. Обозначим основные признаки "крутолоба" так:
его самого - Х, голубой цвет - а, чешуйчатость - b, шестино-
гость - с, двухголовость - d. Получили запись: X(a.b.c.d).
А теперь давайте посмотрим, насколько сильно может этот объ-
ект измениться. Иными словами, давайте рассмотрим разные сте-
пени "аномальности этого объекта, "проотрицаем" его признаки,
прибавив частичку "НЕ":
--------------T----------------------T-----------------------¬
¦ Признак ¦ Норма ¦ Аномалия. ¦
+-------------+----------------------+-----------------------+
¦ Цвет ¦ a - Голубой ¦ А - НЕ-голубой ¦
¦ Покровы ¦ b - Чешуйчатый ¦ В - НЕ-чешуйчатый ¦
¦ Число ног ¦ c - Шесть ног ¦ С - НЕ-шесть ног ¦
¦ Число голов ¦ d - Две головы ¦ D - НЕ-две головы. ¦
L-------------+----------------------+------------------------
Нетрудно догадаться, что из нашей простейшей схемки
выьтекает целый ряд весьма важных правил, далеко не все из ко-
торых очевидны с первого взгляда. Вот, хотя бы, три из них:
Первое:, чем меньше признаков аномальны(в отличие от данной
нормы, разумеется) тем менее аномален для наблюдателя сам объ-
ект. Наблюдатель может сравнить нормальный и аномальный вари-
анты, "вычесть" один из другого, например:
------------------------------------------------------------¬
¦ 1) Х(а.в.с.d) - Х(а.в.с.D) = D. ¦
¦ 2) Х(а.В.с.d) - Х(а.в.с.D) = В.D. ¦
¦ 3) Х(А.В.с.d) - Х(а.в.с.D) = А.В.D. ¦
¦ 4) Х(А.В.С.d) - Х(а.в.с.D) = А.В.С.D. ¦
L------------------------------------------------------------
В 1-м случае изменен только один признак из избранных 4-х, и
аномальность можно принять как 1/4. В последнем случае измене-
ны все 4 признака(избранных, подчеркнем), и, тогда аномаль-
ность составит 1/4 х 4 = 1. Как видим, методы теории вероят-
ности вполне подходят для изумения и измерения аномальности!
2. Другое правило также вытекает из нащей схемки "само" -
чем больше признаков изменено - тем реже такой объект встре-
чается. Биология, а, точнее генетика и фенетика(науки о нас-
ледственных признаках в их кодировании и проявлении) подт-
верждают подобные выводы многими практическими примерами.
Впрочем, следует иметь в виду, что "норма"является поняти-
ем... скользящим!
И, если "пока", чисто количественно, нормой был объект типа
Х(а.в.с.d), то, через какое-то время, "нормой" может стать
объект совсем иной, скажем, Х(а.в.с.D). В эволюционной биоло-
гии это назвали бы "дрейфом признака".
3. Третье правило - правило комбинаторики, о том, в какой
пропорции могут встречаться объекты(особи, явления, процес-
сы) с той или иной степенью "аномальности":
------------T-----------T-----------T-----------T-----------¬
¦0 признаков¦1 признак ¦2 признака ¦3 признака ¦4 признака ¦
+-----------+-----------+-----------+-----------+-----------+
¦1 вариант ¦4 варианта ¦6 вариантов¦4 варианта ¦1 вариант ¦
+-----------+-----------+-----------+-----------+-----------+
¦ ¦ ¦ ¦ ¦ ¦
¦ ¦ ¦ X(A.B.c.d)¦ ¦ ¦
¦ ¦ ¦ X(A.b.C.d)¦ ¦ ¦
¦ ¦ X(A.b.c.d)¦ X(A.b.c.D)¦ X(a.B.C.D)¦ ¦
¦ ¦ X(a.B.c.d)¦ X(a.B.C.d)¦ X(A.b.C.D)¦ ¦
¦ ¦ X(a.b.C.d)¦ X(a.B.c.D)¦ X(A.B.c.D)¦ ¦
¦ X(a.b.c.d)¦ X(a.b.c.D)¦ X(a.b.C.D)¦ X(A.B.C.d)¦ X(A.B.C.D)¦
¦ ¦ ¦ ¦ ¦ ¦
L-----------+-----------+-----------+-----------+------------
Что из себяч представляет самый последний объект? В отличие
от шестиногой двухголовой голубой нормы X(A.B.C.D) является ис-
тинной аномалией! А что это такое, чисто внешне?
НЕ-голубой, это, например, полосатый.
НЕ-чешуйчатый, это, например, пушистый.
НЕ-шестиногий, это, например, четвероногий.
НЕ-двухголовый, это, например, одноголовый.
Других признаков нет, но Вы уже догадались, что за "аномаль-
ный" объект с громким "мявом" выбежал из нашей таблички!...
Но - на той планете он воистину, аномален!
Next